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Abstract
A functional renormalization group approach is applied to a single quantum
particle with emphasis on quantum tunnelling through a barrier. We include
both an effective potential and a wavefunction renormalization and compare
the effects of soft cut-off, hard cut-off and Schwinger proper time regulators.
Numerical procedures and results are studied in detail.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Xp, 11.10.Gh

1. Introduction

A detailed study of quantum tunnelling requires non-perturbative methods. The double-well
potential provides a good example: the energy gap between ground state and first excited state
becomes exponentially small in a nonanalytic way, �E ∼ exp(−1/g), where g is the quartic
coupling, and standard perturbative methods fail. In Langer’s analysis of the double-well
potential in terms of instantons [1] the exponentially small energy gap for large barriers is
obtained but the approach fails for small barriers. The instanton approach corresponds to a
path integral calculation of the free energy and includes fluctuations around the minimum of
the action up to quadratic order.

The renormalization group provides a method of calculating path integrals non-
perturbatively. Wilson invented this method in order to study phase transitions and critical
phenomena. A detailed account of this development is given in [2]. In section 11 of this
reference, a differential form of the renormalization group equation was proposed, which was
called exact renormalization group equation. This equation takes the form of a functional
differential equation and is difficult to solve.

Subsequently, various renormalization group equations in differential form have been
studied, e.g. the Wegner–Houghton equation [3] or the Polchinski equation [4]. Wetterich [5]
and Morris [6] proposed the exact functional renormalization group equation for the effective
action. All these renormalization group equations are closely related and an interesting
overview of the various forms is presented in [7].
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It was only relatively recently that the functional renormalization group approach was
applied to the study of tunnelling in zero-dimensional (0D) systems. In 1998, Aoki et al
[8] studied the Wegner–Houghton equation for the effective potential and calculated explicitly
ground and excited state energies of anharmonic oscillators and double-well potentials. Similar
calculations, also based on the Wegner–Houghton equation, but using different numerics, have
been presented in [9] and [10]. More recently, Hedden et al [11] studied anharmonic oscillators
as well as a single Kondo impurity using a functional renormalization group approach with
a sharp cut-off. The relation between their approach and the effective potential used in other
works is clarified in [12].

In the present paper, we want to study tunnelling in 0D systems starting from the exact
renormalization group equation for the effective action as proposed in [5] and [6]. We will
compare various renormalization group equations for the effective potential and will also
include a wavefunction renormalization. We will address numerical issues, and compare
results with high precision calculations using standard operator techniques.

The renormalization flow of the effective average action �k[φ] is given by (see e.g. [5])

∂

∂k
�k[φ] = 1

2
Tr

(
�

(2)
k [φ] + Rk

)−1 ∂

∂k
Rk. (1)

Here, �
(2)
k [φ] represents the second functional derivative of �k[φ] with respect to φ and

corresponds to the inverse single particle propagator. It depends on the classical field φ,
which in a Landau–Ginzburg type theory is known as the ‘order parameter’. The regulator
Rk vanishes for k = 0, i.e. at k = 0 all quantum fluctuations are included in the calculation,
while for k > 0 quantum fluctuations below a certain limit are suppressed or even excluded.
If Rk completely excludes quantum fluctuations below some limit, Rk is called a hard cut-off.
Otherwise, Rk will be called a soft cut-off function. The Tr symbol indicates a trace over
all quantum numbers labelling the classical field φ. Equation (1) represents a functional
differential equation, and it is via suitable truncations that this equation is transformed into
more tractable partial differential equations. If we can solve the flow equation, then from
�0[φ], which represents the Legendre transform of the partition function Z[J ], all physical
quantities of interest may be obtained, e.g. ground and excited state energies.

Of course, in order to solve the flow equation (1) one needs suitable initial conditions. If
we require the regulator to dominate all other quantities at k = �, one can straightforwardly
prove [13] that the effective average action takes the form

��[φ] = C� + S[φ] (2)

at k = �, where S[φ] is the classical action which itself is essentially determined by the
classical potential V (φ) in which the quantum particle moves. The constant C� depends on
the choice of the regulator and will be determined for specific regulators in the following
section.

There is another functional renormalization group equation for �k which has received
some attention in the literature [14, 15]:

∂

∂k
�k[φ] = −1

2

∫ ∞

0

ds

s

(
∂fk(s)

∂k

)
Tr exp

{−s�
(2)
k [φ]

}
. (3)

This is the Schwinger proper time renormalization group equation (PTRG). In fact, the most
detailed analysis for 0D systems has been made using this equation [15]. Therefore, we
include it here for comparison. A rigorous derivation of equation (3) is not available, however,
plausibility arguments are presented e.g. in [7]. Here, fk is the regulator, which must be
chosen appropriately. For details we refer to [14, 15].
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The effective action �0[φ] as a functional of φ is convex. For a double-well potential,
the effective average action �k[φ] remains non-convex during the main part of the flow and
becomes convex only close to the endpoint of the renormalization flow at k = 0. In fact,
one finds that the effective potential, which is closely related to the effective average action,
is nearly flat, but not constant, between the two wells. Beyond the minima of the wells the
effective potential becomes very steep. In this way, it is possible for the energy gap between
ground and excited states to become exponentially small. The correct description of these
features poses a significant challenge for the numerical procedure that is used to solve the
renormalization group equations.

In section 2, we will discuss truncations of the above two functional renormalization
group equations, which reduce them to a set of coupled partial differential equations. This is
a formal but very critical step, since it is somewhat uncontrolled. However, in our context we
are able to assess the validity of the truncation because we can compare our results to standard
calculations using operator techniques. Equations for the effective potential Uk coupled to the
wavefunction renormalization Zk will be derived. In section 3, two methods will be discussed
to solve these sets of coupled partial differential equations numerically. Results for various
zero-dimensional systems will be analysed in detail.

2. Truncations

In order to solve the functional differential equation (1) a suitable approximation or truncation
must be introduced. To this end, we assume that the effective average action takes a specific
form, e.g.

�k[φ] =
∫ β

0
dτ

1

2

(
dφ(τ)

dτ

)2

+ Uk(φ(τ)). (4)

The quantity Uk(φ) is called the ‘effective potential’ and β = 1/T is the inverse temperature.
In the present paper, we consider zero temperature only, i.e. β = ∞.

More often than not the classical equations of motion are solved by a constant field φ0.
This field, however, does not necessarily minimize the action, but may be a maximum (or
saddle point in higher dimensions) as is the case for the double-well potential. We first expand
the effective potential Uk(φ(τ)) around this constant field φ0 [φ(τ) = φ0 + ψ(τ)],

Uk(φ) = Uk(φ0) + U ′
k(φ0)ψ(τ) + 1

2U ′′
k (φ0)ψ

2(τ ) + · · · , (5)

where the primes denote derivatives with respect to φ0. Correspondingly, we obtain an
expansion of the inverse propagator

�
(2)
k [φ] = [

U ′′
k (φ0) − ∂2

τ

]
δ(τ − τ ′). (6)

Inserting this result into equation (1), evaluating the trace in Fourier space, and comparing
coefficients on both sides of equation (1) we obtain the following flow equation for the effective
potential:

∂

∂k
Uk(φ0) = 1

2

∫ ∞

−∞

dω

2π

∂kRk

U ′′
k (φ0) + ω2 + Rk

. (7)

This flow equation for the effective potential is a nonlinear partial differential equation
depending on two variables, k and φ0.

For practical calculations a suitable regulator must be chosen. In general, we distinguish
between soft and hard cut-off regulator functions. For a given k, a hard cut-off excludes
fluctuations with low frequencies completely from the integration in the corresponding
functional integral, while a soft cut-off only suppresses such low frequency fluctuations.
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Furthermore, a suitable regulator must dominate all other quantities involved in the
renormalization flow for large k. Suitable choices for a smooth cut-off are e.g. power laws in
k. To be specific, we choose Rk = k2, which proves to be a good choice as will be discussed
later. The ω-integral may be performed easily and one finds

∂

∂k
Uk(φ0) = 1

2

(
1 +

1

k2
U ′′

k (φ0)

)− 1
2

. (8)

The initial condition for this equation is given by Uk=�(φ0) = 1
2�+V (φ0). The large constant

1
2� may be obtained as follows: if we neglect U ′′

k in equation (8) we have a flow equation for
the regulator itself, ∂kUk = 1

2 . Choosing the zero point of the energy scale by setting U0 = 0
one finds Uk = 1

2k.
A suitable hard cut-off is given by Rk(ω) = Nk2θ(k2 − ω2) with N a large constant.

Performing the ω-integration one obtains the Wegner–Houghton equation [3, 16]

∂

∂k
Uk(φ0) = − 1

2π
ln

(
1 +

1

k2
U ′′

k (φ0)

)
, (9)

where an irrelevant large constant has been omitted. This is reflected in the initial condition
used for the Wegner–Houghton equation U�(φ0) = V (φ0). Finally, for the PTRG equation
one obtains

∂

∂k
Uk(φ0) = 1√

4π
exp

(
− 1

k2
U ′′

k (φ0)

)
(10)

using a regulator as described in detail in [14, 15]. For this equation the initial condition is
given by U�(φ0) = �/

√
4π + V (φ0).

While the renormalization flow of the various equations is different due to the different
regulators, the physical results obtained at k = 0 should not depend on the choice of the
regulator. This will be investigated in some detail in the following section. It is an instructive
exercise to show that all equations yield the correct and exact ground and excited state energy
for the harmonic oscillator.

A more advanced truncation of the renormalization group equation also includes a
wavefunction renormalization. Then the effective average action is expressed as

�k[φ] =
∫ ∞

0
dτ

1

2
Zk(φ(τ))

(
dφ(τ)

dτ

)2

+ Uk(φ(τ)). (11)

The function Zk(φ(τ)) is called the ‘wavefunction renormalization’. We now expand both
Zk(φ) and Uk(φ) around the constant field φ0 [φ(τ) = φ0 + ψ(τ)]. In order to calculate the
inverse propagator we now need an expansion of �k[φ] up to fourth order in the fluctuation
field ψ around the constant field φ0. Hence, the second-order functional derivative of �k is
given by

�
(2)
k [φ] = [

U ′′
k − Zk∂

2
τ

]
δ(τ − τ ′) +

[
1

2
U

(4)
k ψ2(τ ) + U ′′′

k ψ(τ) − Z′
kψ(τ)∂2

τ

− Z′
k

dψ(τ)

dτ
∂τ − Z′

k

d2ψ(τ)

dτ 2
− 1

2
Z′′

k

(
dψ(τ)

dτ

)2

− Z′′
k ψ(τ)

dψ(τ)

dτ
∂τ − Z′′

k ψ(τ)
d2ψ(τ)

dτ 2
− 1

2
Z′′

k ψ
2(τ )∂2

τ

]
δ(τ − τ ′)

= [A0(τ ) + A1(τ )]δ(τ − τ ′). (12)
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where A0 does not depend on the fluctuations ψ , while A1 contains terms dependent on the
fluctuation field ψ and its derivatives. We need to obtain the derivative expansion of the
inverse of this operator plus Rk . This is accomplished as follows: first we define

Q(τ) = e−iωτ (A0(τ ) + A1(τ ) + Rk)
−1 eiωτ (13)

and show that Q(τ) fulfils the following equation,

Q(τ) = e−iτω 1

A0(τ ) + Rk

eiτω − e−iτω 1

A0(τ ) + Rk

A1(τ ) eiτωQ(τ), (14)

which may be used to calculate Q(τ) iteratively. Each iteration contains higher orders of A1

and, therefore, higher order terms in ψ and its derivatives. We obtain up to second order in A1

Q(τ) = e−iτω

(
1

B
− 1

B
A1

1

B
+

1

B
A1

1

B
A1

1

B

)
eiτω + · · · (15)

with B = A0 + Rk . Finally, we move the innermost 1/B in the last term to the left using a
formula given in the appendix and obtain

Q(τ) = e−iτω

(
1

B
− 1

B
A1

1

B
+

1

B2
A2

1
1

B
+

1

B3
[B,A1]A1

1

B

+
1

B4
[B, [B,A1]]A1

1

B

)
eiτω + · · · . (16)

Now it is easy to operate with 1/B on the exponentials and to calculate the trace in
equation (1) in the Fourier space. Comparing coefficients on both sides of equation (1)
one obtains two coupled flow equations for the effective potential Uk and for the wavefunction
renormalization Zk .

After some straightforward but lengthy algebra, which is best performed by a computer
program for symbolic computation, we obtain

∂

∂k
Uk = 1

2
√

Zk

(
1 +

U ′′
k

k2

)− 1
2

,

∂

∂k
Zk = 1

2
√

Zk

(
1 +

U ′′
k

k2

)− 1
2

(17)

×
(

−1

2

Z′′
k

U ′′
k + k2

+
7

16

(Z′
k)

2

Zk(U
′′
k + k2)

+
9

8

Z′
kU

′′′
k

(U ′′
k + k2)2

− 5

16

Zk(U
′′′
k )2

(U ′′
k + k2)3

)

for the soft cut-off Rk = k2.
For the hard cut-off Rk(ω) = Nk2θ(k2 − ω2) with N a large constant, we obtain

∂

∂k
Uk = − 1

2π
ln

(
Ak

k2

)
,

∂

∂k
Zk = 1

2π

(
Z′′

k

Ak

− 2
Z′

kA
′
k

A2
k

− (kZ′
k)

2

A2
k

+
10

3

k4Zk(Z
′
k)

2

A3
k

+ 4
k2ZkZ

′
kU

′′′
k

A3
k

+
2

3

Zk(U
′′′
k )2

A3
k

− 2
k2Z2

k (A
′
k)

2

A4
k

) (18)

defining Ak = k2Zk + U ′′
k . For a four-dimensional theory an analogous result has been

obtained in [17].
Finally, we consider the corresponding equations for the PTRG. They have been studied

before in [15] but without giving details of the derivation. According to equation (3), we need
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to calculate the integral

− 1

2

∫ ∞

0

ds

s

(
∂fk(s)

∂k

)
Tr exp

(−s�
(2)
k

) = −1

2

∫ ∞

0

ds

s

(
∂fk(s)

∂k

) ∫
dτ 〈τ |e−s(A0+A1)|τ 〉.

(19)

Here, we insert equation (12) for �
(2)
k and use fk as given in [15]. This formula corresponds to

equation (5) in [14]. In order to disentangle the exponential one needs the Zassenhaus formula
[18]. Details are given in the appendix. If one inserts equation (A.7) from the appendix into
equation (19) above and transforms into the Fourier space, one obtains after some algebra two
coupled equations for Uk and Zk:

∂Uk

∂k
= 1√

4π
exp

(
− U ′′

k

Zkk2

)
∂Zk

∂k
= 1√

4π
exp

(
− U ′′

k

Zkk2

)(
− Z′′

k

k2Zk

+
7

8

(Z′
k)

2

k2Z2
k

+
3

2

Z′
kU

′′′
k

k4Z2
k

− 1

6

(U ′′′
k )2

k6Z2
k

)
.

(20)

The algebra including the integral over s is again easily performed by a computer. The result
above agrees exactly with the formulae given in [15].

3. Applications and discussion of results

The renormalization group equations obtained in the previous section represent (coupled)
nonlinear partial differential equations, which must be solved subject to the appropriate initial
condition. Analytic solutions of these equations seem out of the question, and good numerical
solutions can also be difficult to calculate. The partial differential equations may be converted
into a set of coupled ordinary differential equations, which are then solved on a computer
numerically. However, there are various ways of doing this. We will investigate two different
methods in this paper. The first method is a Taylor expansion of Uk(φ0) and Zk(φ0) about
φ0 = 0,

Uk(φ0) =
N∑

n=0

uk,n

n!
φn

0 , Zk(φ0) =
N∑

n=0

zk,n

n!
φn

0 . (21)

If we insert this expansion into the various renormalization group equations developed in the
previous section, we obtain a coupled set of 2(N + 1) ordinary differential equations for the
Taylor coefficients uk,n and zk,n. Convergence in N must be checked carefully. In practice, it
is necessary to use a program for symbolic computation in order to set up the set of differential
equations.

We will call our second method the ‘method of lines’. Here we discretize Uk(φ0) and
U ′′

k (φ0) on a suitable N point grid with discretization order M for the derivatives with respect
to φ0. For a coupled system Zk(φ0) and its derivatives will be discretized analogously. For
example, for M = 2 on a homogeneous grid with spacing �φ0 we use

U ′′
k,i = Uk,i+1 − 2Uk,i + Uk,i−1

(�φ0)2
. (22)

Analogous formulae may be obtained for higher order discretizations as well as for edge
points. In this way, one obtains a set of 2N coupled ordinary differential equations in the
variable k, which is then solved by standard methods such as the (implicit) Runge–Kutta or
other methods. In practice, we use the general purpose routines implemented in Mathematica
to solve the set of ordinary differential equations. For details see the extensive documentation
available with this package [19]. It should be pointed out that the routines implemented in this
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Table 1. Ground state energy E0 and energy of first excited state E1 of the quartic oscillator
potential for various couplings g (N = 30,� = 106, Rk = k2 for SM) calculated from the
effective potential. The superscripts SM, WH and PT label the smooth cut-off (equation (8)),
the sharp cut-off (equation (9)) and the proper time (equation (10)) version of renormalization
flow equation, respectively. The superscript ex labels the result calculated using standard operator
quantum mechanics ([20]).

g ESM
0 EWH

0 EPT
0 Eex

0 ESM
1 EWH

1 EPT
1 Eex

1

0.1 0.5589 0.5586 0.5593 0.5591 1.7696 1.7678 1.7721 1.7695
0.2 0.6019 0.6013 0.6028 0.6024 1.9507 1.9475 1.9556 1.9505
0.3 0.6374 0.6364 0.6386 0.6380 2.0950 2.0906 2.1016 2.0946
0.4 0.6680 0.6667 0.6696 0.6688 2.2174 2.2120 2.2255 2.2169
0.5 0.6953 0.6938 0.6971 0.6962 2.3250 2.3188 2.3343 2.3244
0.6 0.7200 0.7183 0.7221 0.7210 2.4217 2.4148 2.4321 2.4210
0.7 0.7428 0.7409 0.7451 0.7439 2.5100 2.5025 2.5214 2.5092
0.8 0.7639 0.7619 0.7651 0.7651 2.5916 2.5835 2.6038 2.5907
0.9 0.7837 0.7815 0.7864 0.7850 2.6676 2.6590 2.6806 2.6666
1.0 0.8024 0.8000 0.8052 0.8038 2.7389 2.7298 2.7527 2.7379

10.0 1.5009 1.4939 1.5092 1.5050 5.3250 5.3010 5.3617 5.3216
50.0 2.4923 2.4796 2.5068 2.4997 8.9214 8.8787 8.9855 8.9151

100.0 3.1219 3.1057 3.1401 3.1314 11.1952 11.1414 11.2758 11.1873
500.0 5.3032 5.2755 5.3325 5.3199 19.0567 18.9645 19.1901 19.0434

1000.0 6.6730 6.6381 6.7081 6.6942 23.9885 23.8727 24.1525 23.9722

package entail a sophisticated adaptive step-size control mechanism, i.e. the renormalization
group equations are solved on a k-grid which is adapted to the problem under consideration.

The specific observables that we will analyse are the ground state energy E0 (vacuum
energy) and the energy gap �E10. In terms of the effective potential they are given by

E0 = U0(φ0,min), �E10 =
√

U ′′
0 (φ0,min)/Z0(φ0,min), (23)

where φ0,min denotes the location of the minimum of U0(φ0). Since U0(φ0) is convex, the
minimum is uniquely defined.

3.1. Anharmonic oscillator

Before studying systems with tunnelling, we first consider anharmonic oscillators. This will
provide insight into the quality of the numerical procedures. The potential, which determines
the initial condition, is given by

V (x) = 1
2x2 + gx4. (24)

The mass and frequency of the oscillator are set to 1 for convenience.
Of the two numerical methods considered here the Taylor expansion described above is

numerically the most efficient one, and it produces good results in a relatively short amount of
computer time. We investigated expansions up to order N = 30 and found good convergence
even for large coupling constants g. Results are presented in table 1. They are calculated for
N = 30 and � = 106. For g < 2, N = 20 is sufficient for convergence. The agreement with
calculations using high precision conventional methods [20] is excellent (better than 0.4% even
at larger values of g). The numerical values for the ground state energy E0 calculated using
a soft cut-off are systematically somewhat below the conventional calculations. A similar
trend is observed for the Wegner–Houghton equation. The PTRG results are systematically
slightly above the results obtained with conventional methods, which are believed to be precise
to up to six significant figures. The energy gap obtained from the soft cut-off calculations
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Table 2. Ground state energy E0 and energy gap �E10 for the quartic oscillator potential for
various couplings g (N = 30,� = 106) calculated using equation (17). The superscript ex labels
results obtained from standard operator quantum mechanics ([20]). In the last column shows the
wavefunction renormalization Z0(0).

g ESM
0 Eex

0 �ESM
10 �Eex

10 Z0(0)

0.1 0.5594 0.5591 1.2107 1.2103 1.0029
0.2 0.6030 0.6024 1.3485 1.3481 1.0052
0.3 0.6389 0.6380 1.4570 1.4567 1.0068
0.4 0.6698 0.6688 1.5485 1.5482 1.0080
0.5 0.6975 0.6962 1.6285 1.6282 1.0088
0.6 0.7225 0.7210 1.7002 1.7000 1.0096
0.7 0.7455 0.7451 1.7655 1.7653 1.0102
0.8 0.7669 0.7651 1.8257 1.8256 1.0107
0.9 0.7869 0.7850 1.8817 1.8816 1.0111
1.0 0.8058 0.8038 1.9341 1.9341 1.0115

10.0 1.5110 1.5050 3.8146 3.8166 1.0167
50.0 2.5105 2.4997 6.4108 6.4153 1.0177

100.0 3.1452 3.1314 8.0498 8.0559 1.0180
500.0 5.3435 5.3199 13.7123 13.7235 1.0183

1000.0 6.7239 6.6942 17.2634 17.2780 1.0184

is systematically slightly above the conventional results and for the hard cut-off and PTRG
calculations systematically slightly below them. Generally speaking, the performance of the
various renormalization flow equations is very good and leaves little room for improvement.
Surprisingly, the numbers obtained using the PTRG equation, which has not been derived
rigorously, seem to compare the best with the conventional calculations.

We now include the wavefunction renormalization in our calculations. Here we
concentrate on the soft cut-off flow equation (17). Results are shown in table 2. In fact, the
analytical expressions for the flow equations of the Taylor coefficients are rather formidable
and certainly can only be handled using a computer. However, it appears that a slight
improvement on the results without wavefunction renormalization can be achieved. This is
particularly noticeable in the calculation for the energy gap, where we now find agreement with
conventional calculations to better than 0.03% for coupling constants g < 2 and slightly worse
for larger g. The calculation of the ground state energy is complicated by the fact that here
the large constant � enters the calculation and the renormalization flow encompasses several
orders of magnitude in the variable k. In general, we find that we achieve worse accuracy
for E0 than for the energy gap. Interestingly, with the wavefunction renormalization Zk we
find ground state energies E1 that are systematically above the numbers from conventional
calculations. The wavefunction renormalization Z0(0) increases slowly from Z = 1 at g = 0
to Z = 1.02 at g = 1000.

Results related to those presented above have been partly obtained before using the
Wegner–Houghton equation [8–10] and PTRG equation [15]. The soft cut-off flow equation,
which to our knowledge has not been used before in the present context, allows a choice of
cut-off functions. We experimented with various power laws and found that the k2 cut-off
function is numerically preferable. However, other power-law cut-off functions may be used
if care is taken when choosing the starting point � for the evolution.

Once a suitable computer program for solving the renormalization group equations is set
up, it is easy to solve other problems as well. We will briefly discuss the sextic oscillator here.
Its potential is given by

V (x) = 1
2x2 + gx6. (25)
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Table 3. Ground state energy E0 and excited state E1 for the sextic oscillator potential for
various couplings g (N = 24,� = 106) calculated using equation (17). The superscript ex
labels results obtained from standard operator quantum mechanics ([21]). The last column shows
the wavefunction renormalization Z0(0). In the columns with the additional label Z = 1 the
wavefunction renormalization is not included.

g ESM
0 (Z = 1) ESM

0 Eex
0 ESM

1 (Z = 1) ESM
1 Eex

1 Z0(0)

0.01 0.5152 0.5156 0.5154 1.5950 1.5961 1.5954 1.0021
0.1 0.5856 0.5887 0.5869 1.9494 1.9534 1.9505 1.0133
1 0.8006 0.8108 0.8048 2.8734 2.8794 2.8749 1.0270

10 1.2722 1.2950 1.2820 4.7533 4.7610 4.7566 1.0342
100 2.1725 2.2174 2.1925 8.2432 8.2545 8.2542 1.0369

Ground and excited state energies are shown in table 3 and compared to standard calculations
[21]. The general trends are similar to those seen for the quartic oscillator. However, it appears
that here the wavefunction renormalization becomes more important as is indicated by a more
rapidly rising Z0(0). This indicates that for very steeply rising potentials a local (effective)
potential approximation for the effective average action is not sufficient.

3.2. Symmetric double-well potential

We next consider the double-well potential

V (x) = −1

2
x2 + gx4 +

1

16g
. (26)

This is a Z2 symmetric potential with minima V (xm) = 0 at xm = ±1/(2
√

g) and a barrier
between the two wells with height h = 1/(16g). The distance between the minima is given
by d = 1/

√
g. For small g the barrier is large and we expect tunnelling to play an important

role.
The essential difference between this case and the anharmonic oscillators discussed in the

previous section is that the renormalization flow starts from a non-convex classical potential
at k = � and must end at a convex effective potential when k = 0. More specifically, the
flow of U ′′

k (φ0) starts from U ′′
�(φ0) = −1 + 12gφ2

0 , which is negative between −xm/
√

3 and
+xm/

√
3, and must end with U ′′

0 (φ0) > 0. During the flow U ′′
k (φ0) must fulfil the relation

U ′′
k (φ0) > −k2 for the soft and hard cut-off RG equations, otherwise the renormalization flow

would become singular at some point during the flow. Such a stringent condition does not
hold for the PTRG, which simplifies the numerical solution significantly.

Let us illustrate the features described above with numerical examples obtained using the
method of lines for relatively small couplings g = 0.05 and g = 0.01: as can be seen in
figure 1, the effective potential for k = 0 is nearly flat between the two wells. Close to the
minima the effective potential bends up sharply to a steep rise. At about the minima of the
classical potential the effective potential bends towards the classical potential and follows it
for large |φ0|. These features are expected from a qualitative analysis of the RGEs. The
crossing of the effective potential with the y-axis marks the value of the ground state energy.
Obviously, it is already deeply below the top of the barrier.

It is interesting to study the behaviour of the flow of U ′′
k (φ0) close to k = 0, since it drives

the partial differential equation (8). This is shown in figure 2. Obviously, U ′′
k (φ0) stays at its

initial value until it bends towards the line −k2 at around k ∼ 1. For very small couplings g,
we see a rather complicated structure for k < 1. In particular, for φ0 between the classical
minima, the flow follows the line −k2 rather closely at small k. Therefore, in this range of
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Figure 1. Effective potential and its second derivative calculated from the soft cut-off RGE for
g = 0.05 (left) and g = 0.01 (right) (� = 1500). Full lines: U0(φ0) at the beginning (double
well) and at the end of the flow (convex). Short-dashed lines: U ′′

0 (φ0) at the beginning and the
end of the flow. The calculations were done on grid with 100 points evenly distributed between
φ0 = −20 and φ0 = −20 using the method of lines. Discretization order M = 3.
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Figure 2. Flow of U ′′
k (φ0) versus k calculated using the soft cut-off RGE for g = 0.05 and

φ0 = 0, 0.8, 2 (left) and g = 0.01 and φ0 = 0, 2, 4, 5 (right) (� = 1500). The short-dashed line
represents −k2. The flow of U ′′

k (φ0) never crosses the line −k2, but follows it closely for small k
and φ0.

parameters the flow may be described by the formula U ′′
k (φ0) = a − k2 with 0 < a � 1 for

small g. For φ0 beyond the minima of the wells the flow remains very close to its initial value.
Unfortunately, already for the uncoupled equation (8) it proves to be rather difficult to

obtain the structure just described with sufficient accuracy in a numerical analysis. There are
two obstacles: firstly, the numerical procedure must be accurate enough that it does not hit
the line −k2 accidentally due to numerical inaccuracies. This is difficult for small g, since
the difference between −k2 and U ′′

k (φ0) is extremely small. Secondly, if one increases the
spacial resolution of the numerical grid in an attempt to describe this structure more precisely,
one runs into instabilities due to discretization errors. In practice, it is necessary to chose
the spacing of the discretization grid and the discretization order M carefully in order to steer
the calculation clear of the problems just described. Similar considerations hold for the hard
cut-off Wegner–Houghton equation, since it shows the same singularity as the soft cut-off
equation.

We now consider the equations with wavefunction renormalization, equation (17). Similar
considerations hold for equation (18). Here, the singularity discussed above appears in each
term of the equation for Zk . We observe that coupling between the two equations for Uk(φ0)

and Zk(φ0) only occurs through the last term ∼Zk(U
′′′
k )2 in the equation for Zk(φ0). If this

term is absent, one easily shows that Zk(φ0) = 1 solves the coupled equations. So the
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Figure 3. Flow of U ′′
k (0) calculated using the PTRG for g = 0.01 and φ0 = 0, 3.5 (� = 1500).

The short-dashed line represents −k2. Here the flow crosses the line −k2.

behaviour of U ′′′
k (φ0) is critical for a practical solution of the coupled equations. From our

considerations above we know that the effective potential closely follows the classical potential
for φ0 somewhat beyond the minima of the classical potential. Consequently, in this parameter
range U ′′′

k (φ0) = 0 and Zk(φ0) = 1. It is in the region around the minima of the potential that
U ′′′

k (φ0) is markedly different from zero and, therefore, Zk(φ0) �= 1.
However, it is the critical term ∼(U ′′′

k )2, which increases numerical instabilities: firstly,
numerical uncertainties in the determination of U ′′′

k enter quadratically. Secondly, the small
term k2 + U ′′

k enters with an inverse cubic power. As a result, the essential driving term for the
evolution of Zk cannot be determined with sufficient numerical accuracy and the evolution of
Zk becomes unstable even for coupling constants around g = 0.1, where Z0(0) is expected to
be significantly different from 1.

For the PTRG the situation is different, since the PTRG does not enforce the condition
U ′′

k (φ0) > −k2. An example is shown in figure 3. The line −k2 is crossed by the flow. This
different flow pattern simplifies the practical solution of the PTRG significantly. For k � 0.1
the flow develops the form U ′′

k (φ0) ∼ a −bk2 with constants a > 0, b > 0. Also in the case of
the PTRG , it is the term U ′′′

k (φ0) which couples equations (20) for Uk and Zk . These coupled
equations are much easier to solve numerically than equation (8) or (9), since the equations
do not require U ′′

k (φ0) > −k2.
From the discussion above, it appears that highly accurate calculations require a numerical

method which specifically takes into account the singular structure of the RGE. In this paper,
however, we will limit the discussion to results obtained using general purpose solvers for
the set of nonlinear differential equations. Such techniques are limited, and we will explore
the limitations in the following discussion. A Taylor expansion technique will not be able
to describe the flow pattern, which develops for small g and φ0 for the soft or hard cut-off
RGE. In fact, it runs rather soon into the singularity U ′′

k (φ0) = −k2, and the effective potential
cannot be calculated for k below the singular point. However, it works surprisingly well for
the PTRG.

At small φ0 the effective potential may be expanded into a Taylor series. As is seen
from figure 4 the Taylor expansion technique does manage to produce the nearly flat potential
between the two minima correctly. It is the behaviour of the effective potential close to the
minima of the classical potential and beyond which cannot be reproduced by this technique
as is seen from a comparison with figure 1. For these calculations we used N = 20, which is
enough for convergence.

We now discuss the spectra obtained quantitatively. We first present the spectra obtained
from equations (8), (9) and (10) using the Taylor expansion (21) of the effective potential.
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Figure 4. The effective potential for g = 0.05 calculated using a Taylor expansion. Long-dashed
lines: classical potential. Full line: effective potential U0(0). Short-dashed line: second derivative
of classical potential. Dotted line: second derivative of effective potential (N = 20, � = 1500).

Table 4. Ground state energy E0 and energy of first excited state E1 of the double-well potential
for various couplings g calculated using a Taylor expansion (N = 20,� = 104). The superscripts
SM, WH and PT label the smooth cut-off, the hard cut-off and the proper time version of ERGE,
respectively. The superscript ex labels the result calculated with standard operator quantum
mechanics ([22–25]).

g ESM
0 EWH

0 EPT
0 Eex

0 ESM
1 EWH

1 EPT
1 Eex

1

0.05 0.5616 – 0.6192 0.6173 0.6595 – 0.6821 0.6735
0.06 0.5542 0.5405 0.5998 0.5813 0.7149 0.7275 0.7263 0.6844
0.07 0.5247 0.5325 0.5648 0.5469 0.7292 0.8078 0.7485 0.7008
0.08 0.4984 0.4932 0.5322 0.5168 0.7421 0.8035 0.7680 0.7210
0.09 0.4766 0.4636 0.5047 0.4915 0.7599 0.7973 0.7886 0.7436
0.1 0.4585 0.4432 0.4823 0.4709 0.7818 0.8002 0.8105 0.7678
0.5 0.4504 0.4436 0.4576 0.4526 1.5461 1.5269 1.5694 1.5423
1.0 0.5740 0.5678 0.5809 0.5773 2.0865 2.0675 2.1111 2.0831

10.0 1.3730 1.3638 1.3830 1.3778 5.0002 4.9703 5.0418 4.9957
100.0 3.0602 3.0418 3.0792 3.0701 11.0422 10.9807 11.1250 11.0337

It was suggested in [10] that such an approach is not suitable in general. However, we find
that down to couplings g = 0.05, which were also considered in [10], a Taylor expansion does
work at the 10% level or better, as is shown in table 4. Not surprisingly, one finds that the
PTRG renormalization group performs better than the other approaches. Here the agreement
is better than 4% for the ground state energy and better than 20% for the energy gap. For
couplings g smaller than 0.05, all RGE run into a singularity or instability and the ground
state energy and the energy gap cannot be determined. This situation does not improve if one
includes the wavefunction renormalization.

In the following, we use the method of lines, which takes into account the details of the
renormalization flow correctly also at large φ0. The results for the spectrum are presented in
table 5 as well as in figures 5.

We observe that the smooth cut-off equation determines the ground state energy in
agreement with conventional calculations on the 1% level over the whole range of coupling
constants. This is significantly better than the results obtained in [10] using the Wegner–
Houghton equation, where the ground state energy was too small for small coupling constants.
Indeed, our calculations for the Wegner–Houghton equation also lead to a ground state energy
which is too small. The reason for this is still not fully understood, but we attribute it to
numerical difficulties. Moreover, for the hard and soft cut-off RGE we are unable to determine
the wavefunction renormalization reliably for small g due to numerical difficulties connected
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Figure 5. (left) Ground state energy E0 and excited state energy E1 calculated with the PTRG
equation (10) using the method of lines with 100 points evenly distributed between φ0 = −5 and
φ0 = 5, discretization order M = 2 (dots). Full lines: exact result using conventional methods
(right). The same calculation including the wavefunction renormalization, discretization order
M = 2.

Table 5. Ground state energy E0 and energy gap �E10 for the double-well potential calculated
using the method of lines (� = 1500). The superscripts SM and PT label the smooth cut-off and
the proper time version of ERGE, respectively. The superscript ex labels the result calculated with
standard operator quantum mechanics ([22–25]).

g ESM
0,Z=1 EPT

0,Z=1 EPT
0 Eex

0 �ESM
10,Z=1 �EPT

10,Z=1 �EPT
10 �Eex

10

0.01 0.6942 0.7050 – 0.6968 0.0197 0.0098 – 0.0
0.02 0.6791 0.6870 – 0.6856 0.0447 0.0194 – 0.0001
0.03 0.6451 0.6766 – 0.6715 0.0691 0.0359 – 0.0036
0.04 0.6201 0.6565 0.6796 0.6491 0.0953 0.0517 0.0324 0.0210
0.05 0.5926 0.6347 0.6457 0.6173 0.1273 0.0817 0.0440 0.0562
0.06 0.5640 0.6028 0.6000 0.5813 0.1634 0.1329 0.0739 0.1030
0.07 0.5357 0.5657 0.5711 0.5469 0.1882 0.1859 0.1394 0.1539
0.08 0.5103 0.5335 0.5362 0.5168 0.2464 0.2360 0.1964 0.2041
0.09 0.4882 0.5057 0.5079 0.4915 0.2882 0.2914 0.2500 0.2520
0.10 0.4627 0.4833 0.4850 0.4709 0.3258 0.3276 0.2978 0.2969
0.20 0.3960 0.4045 0.4043 0.3975 0.6321 0.6413 0.6241 0.6159
0.30 0.4046 0.4107 0.4085 0.4043 0.8402 0.8411 0.8252 0.8166
0.40 0.4286 0.4336 0.4319 0.4272 0.9806 0.9864 0.9761 0.9666

with the singularity. The energy gap is obtained in reasonable agreement with conventional
calculations. To obtain the extremely small energy gap at small g correctly requires numerical
procedures with extremely high accuracy, since the energy gap is obtained from the square
root of U ′′

k , e.g. for g = 0.3 we expect U ′′
k < 10−5.

The ground state energy determined from the PTRG equation is slightly too large for
small g when compared to conventional calculations. For the energy gap we essentially
confirm the results presented in [15]. The wavefunction renormalization definitely improves
the calculation of the energy gap, while it does not improve the calculation of the ground state
energy. This feature remains to be clarified.

3.3. Supersymmetric model

The 0D supersymmetric model proposed by Witten [26], which is described by the Hamiltonian

H = 1

2

(
p2 + w2(x) + σ3

dw(x)

dx

)
(27)
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Figure 6. Effective potential and its second derivative calculated from the soft cut-off RGE for
g = 0.05 (left), g = 0.15 (centre) and g = 0.4 (� = 1500). Full lines: U0(φ0) at the beginning
of the flow (double well) and at the end of the flow (convex). Short-dashed lines: U ′′

0 (φ0) at the
beginning and at the end of the flow. The calculations are done on grid with 120 points evenly
distributed between φ0 = −10 and φ0 = 15 using the method of lines. Discretization order M = 3.

shows dynamical breaking of supersymmetry, i.e. the Hamiltonian commutes with the
operators Q1 = 1

2 (σ1p + σ2w(x)) and Q2 = 1
2 (σ2p − σ1w(x)), but the ground state is

not an eigenstate of these operators. The σi are Pauli matrices, p is the momentum operator
and w(x) = gx2 − x with g a parameter.

Here we would like to study the spectrum of this model quantitatively. This has been
done before in [8] using the Wegner–Houghton equation. The Hamiltonian above may be
diagonalized in Pauli space

H =
(

1
2p2 + V+(x) 0

0 1
2p2 + V−(x)

)
(28)

with V± = 1
2 (w2(x) ± dw(x)/dx). Consequently, we are led to investigate the potential

V+(x) = 1
2g2x4 − gx3 + 1

2x2 + gx − 1
2 . (29)

The potential V+(x) is an asymmetric double well for 0 < g < 0.31 and a single well for
g > 0.31. The barrier between the wells is small close to g ∼ 0.31, and increases for
g → 0. However, since the well is asymmetric, the spectrum differs qualitatively from that
of the Z2 symmetric double-well studied in the previous section. This is shown in figure 6.
The minimum of the classical potential is found somewhat below φ0 = 0, and the effective
potential U0(φ0) shows its (positive) minimum slightly above φ0 = 0. The value of U0(φ0)

at the minimum determines the ground state energy. Close to this point U ′′
0 (φ0) drops to zero

for g < 0.31, and we obtain U ′′
0 (φ0,min) somewhere between 0.5 and 1. It is the structure

of the effective potential close to the minimum of the classical potential which determines
the spectrum, unlike in the case of the symmetric double well, where the structure between
the two wells determines the spectrum. As we have seen in the previous subsection, the
Taylor expansion technique used in [8] is not able to describe the effective potential in the
region around the classical minima. This is the reason why the results obtained in [8] are
unsatisfactory.

It can be shown that the dynamical breaking of supersymmetry shown by the model
equation (28) is related to a non-vanishing ground state energy. Perturbation theory predicts a
ground state energy E0 = 0 for the potential V+, so the dynamical breaking of supersymmtry
is clearly a non-perturbative effect, which is easily obtained by the techniques employed here.
The calculated spectrum is shown in figure 7. The calculation shown in the left plot has been
done with the soft cut-off RG equation (8) using the method of lines. Obviously the ground
state energy is obtained in agreement with conventional calculations, but E1 is somewhat too
large. If we include the wavefunction renormalization using equation (8) the agreement with
conventional calculations clearly improves as shown on the right plot in figure 7. However,
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Figure 7. (left) Ground state energy E0 and excited state energy E1 calculated with the soft cut-off
RG equation (8) using the method of lines with 100 points evenly distributed between φ0 = −10
and φ0 = 8, discretization order M = 3 (dots). Full lines: exact result using conventional methods
(right). The same calculation including the wavefunction renormalization.
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Figure 8. (left) Ground state energy E0 and excited state energy E1 calculated with the PTRG
equation (10) using the method of lines with 90 points evenly distributed between φ0 = −4 and
φ0 = 7, discretization order M = 3 (dots). Full lines: exact result using conventional methods
(right). The same calculation including the wavefunction renormalization, discretization order
M = 2.

with the numerical methods presently employed we are unable to solve the coupled equations
correctly in the parameter region g < 0.3.

Using the PTRG equation (10) we obtain similar results as shown in figure 8. The
numerical calculation is significantly faster than in the case of the soft cut-off RGE, since
there is no singularity which needs to be avoided during the renormalization flow. This
problem has been discussed in detail in the previous section. Again, consideration of
the wavefunction renormalization via equation (20) improves agreement with conventional
calculations. Obviously, there is still some disagreement with conventional calculations in the
parameter range, where E1 shows a minimum. The reason for this discrepancy is presently
not clear.

4. Conclusions

Previous work [15] using the Schwinger time renormalization group equation (PTRG) suggests
that consideration of the wavefunction renormalization improves the description of quantum
systems influenced by tunnelling processes. Since the PTRG cannot be rigorously derived,
in the present paper we undertake an analogous investigation on the basis of the soft cut-off
renormalization group equations derived by Wetterich and Morris as well as the hard cut-off
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equation originally proposed by Wegner and Houghton. To this end we derive a partial
differential equation for the wavefunction renormalization Zk(φ0), which supplements the
well-known equation for the effective potential Uk(φ0). The derivation is based on a standard
gradient expansion of the effective average action. It is found that the soft cut-off clearly
performs quantitatively better than the hard cut-off procedure, which is preferred by some
investigators (see e.g. [11]).

We then analyse the resulting set of coupled partial differential equations qualitatively
and numerically. It is shown that the solutions for the soft and hard cut-off equations differ
qualitatively from those of the PTRG at small k. This is essentially due to the fact that the soft
and hard cut-off equations must fulfil the relation U ′′

k (φ0) > −k2 during the renormalization
flow, in order to avoid a singularity of the flow equations. This condition proves to be a
numerical difficulty in those parameter ranges where tunnelling is important.

Using the renormalization group equations we calculate the spectra for four examples, a
quartic anharmonic oscillator, a sextic anharmonic oscillator, a symmetric and an asymmetric
double well. The spectra obtained agree well with results from conventional calculations, in
particular, if the wavefunction renormalization is included. However, for the soft and hard
cut-off renormalization group equations, we are presently unable to solve the coupled partial
differential equations for the wavefunction renormalization Zk with sufficient accuracy in the
region where tunnelling plays an important role. This is due to the singularity mentioned
above. In the case of the PTRG the equations can be solved easily, and good numerical results
are achieved.

Finally, it is interesting to note that in every respect investigated here the PTRG equation
performs better than the soft and hard cut-off equations. Its only disadvantage seems to be
that a rigorous derivation of this equation is not known.
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Appendix. Some useful formulae from operator algebra

Here we briefly review a few operator identities, which we need for our calculations.
Let A and B operators. The Hadamard formula is given by

etBA e−tB = A + t[B,A] +
t2

2!
[B, [B,A]] + · · · . (A.1)

We use this formula in order to prove the relation

A
1

B
= 1

B
A +

1

B2
[B,A] +

1

B3
[B, [B,A]] + · · · . (A.2)

This result enables us to move the innermost 1/B operator in equation (15) to the left. Setting
A = A1 one obtains

Q(τ) = e−iτω

(
1

B
− 1

B
A1

1

B
+

1

B2
A2

1
1

B
+

1

B3
[B,A1]A1

1

B

+
1

B4
[B, [B,A1]]A1

1

B

)
eiτω + · · · . (A.3)
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In order to derive the derivative expansion for the PTRG renormalization group equation
we need the Zassenhaus formula [18, 27], which is given by

eA+B = eA eB

∞∏
i=2

eCi , (A.4)

where

C2 = 1
2 [B,A],

C3 = 1
3 [[B,A], B] + 1

6 [[B,A], A],

C4 = 1
8 [[[B,A], B], B] + 1

8 [[[B,A], A], B] + 1
24 [[[B,A], A], A].

(A.5)

This formula allows one to disentangle two exponentials.
Setting A = −sA0 and B = −sA1 one obtains

e−s(A0+A1) = e−sA0 e−sA1 eC2 eC3 eC4 · · · . (A.6)

We now expand this product of exponential operators up to O(s4) and obtain

e−s(A0+A1) = e−sA0

{
1 − sA1 +

s2

2

(
A2

1 + [A1, A0]
)

− s3

6

(
A3

1 + 3A1[A1, A0] + 2[[A1, A0], A1] + [[A1, A0], A0]
)

+
s4

24

(
A4

1 + 6A2
1[A1, A0] + 3[A1, A0]2 + 8A1[[A1, A0], A1]

+ 4A1[[A1, A0], A0] + 3[[[A1, A0], A1], A1]

+ 3[[[A1, A0], A0], A1]) + [[[A1, A0], A0], A0]
)}

. (A.7)

Terms with more than two A1 operators do not contribute to the equation for Zk . We also
explicitly checked that terms in higher than fourth order in s do not contribute to the equation
for Zk .
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